首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105189篇
  免费   10794篇
  国内免费   5291篇
工业技术   121274篇
  2024年   213篇
  2023年   1575篇
  2022年   2711篇
  2021年   3622篇
  2020年   3717篇
  2019年   3261篇
  2018年   3038篇
  2017年   3760篇
  2016年   4083篇
  2015年   4128篇
  2014年   6216篇
  2013年   6754篇
  2012年   7800篇
  2011年   8113篇
  2010年   5663篇
  2009年   5904篇
  2008年   5098篇
  2007年   6654篇
  2006年   6125篇
  2005年   5124篇
  2004年   4475篇
  2003年   3896篇
  2002年   3306篇
  2001年   2882篇
  2000年   2333篇
  1999年   1895篇
  1998年   1540篇
  1997年   1317篇
  1996年   1120篇
  1995年   943篇
  1994年   782篇
  1993年   606篇
  1992年   576篇
  1991年   445篇
  1990年   335篇
  1989年   242篇
  1988年   201篇
  1987年   127篇
  1986年   124篇
  1985年   116篇
  1984年   115篇
  1983年   78篇
  1982年   58篇
  1981年   49篇
  1980年   46篇
  1979年   21篇
  1978年   9篇
  1977年   13篇
  1959年   16篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Polyamines are ubiquitous, low-molecular-weight aliphatic compounds, present in living organisms and essential for cell growth and differentiation. Copper amine oxidases (CuAOs) oxidize polyamines to aminoaldehydes releasing ammonium and hydrogen peroxide, which participates in the complex network of reactive oxygen species acting as signaling molecules involved in responses to biotic and abiotic stresses. CuAOs have been identified and characterized in different plant species, but the most extensive study on a CuAO gene family has been carried out in Arabidopsis thaliana. Growing attention has been devoted in the last years to the investigation of the CuAO expression pattern during development and in response to an array of stress and stress-related hormones, events in which recent studies have highlighted CuAOs to play a key role by modulation of a multilevel phenotypic plasticity expression. In this review, the attention will be focused on the involvement of different AtCuAOs in the IAA/JA/ABA signal transduction pathways which mediate stress-induced phenotypic plasticity events.  相似文献   
2.
An acoustic emission (AE) experiment was carried out to explore the AE location accuracy influenced by temperature. A hollow hemispherical specimen was used to simulate common underground structures. In the process of heating with the flame, the pulse signal of constant frequency was stimulated as an AE source. Then AE signals received by each sensor were collected and used for comparing localization accuracy at different temperatures. Results show that location errors of AE keep the same phenomenon in the early and middle heating stages. In the later stage of heating, location errors of AE increase sharply due to the appearance of cracks. This provides some beneficial suggestions on decreasing location errors of structural cracks caused by temperature and improves the ability of underground structure disaster prevention and control.  相似文献   
3.
The transient liquid phase (TLP) bonding of CoCuFeMnNi high entropy alloy (HEA) was studied. The TLP bonding was performed using AWS BNi-2 interlayer at 1050 °C with the TLP bonding time of 20, 60, 180 and 240 min. The effect of bonding time on the joint microstructure was characterized by SEM and EDS. Microstructural results confirmed that complete isothermal solidification occurred approximately at 240 min of bonding time. For samples bonded at 20, 60 and 180 min, athermal solidification zone was formed in the bonding area which included Cr-rich boride and Mn3Si intermetallic compound. For all samples, the γ solid solution was formed in the isothermal solidification zone of the bonding zone. To evaluate the effect of TLP bonding time on mechanical properties of joints, the shear strength and micro-hardness of joints were measured. The results indicated a decrement of micro-hardness in the bonding zone and an increment of micro-hardness in the adjacent zone of joints. The minimum and maximum values of shear strength were 100 and 180 MPa for joints with the bonding time of 20 and 240 min, respectively.  相似文献   
4.
采用沉水植物表面流湿地(沉水组)、挺水植物表面流湿地(挺水组)和浮床湿地(浮床组)3种盐沼湿地对长江口近岸低污染水体进行脱氮除磷效能的研究。结果表明,HRT为3 d时,水组、挺水组、浮床组对NO3^--N的去除率在高温时段分别为79.9%±13.2%、71.8%±15.2%、77.2%±13.2%,中温时段分别为39.4%±13.7%、31.5%±8.5%、18.4%±16.6%,低温时段分别为15.6%±14.6%、19.7%±8.6%、2.%5±8.6%。沉水组和挺水组对TP的去除率受温度影响较小,分别为66.4%±32.4%、55.5%±29.4%;而浮床组除磷效果受温度影响较大。当HRT缩短为1.5 d时,3组湿地系统在高温时段仍可达到相近的脱氮除磷效果,在中低温时段脱氮除磷效果都有不同程度的下降。  相似文献   
5.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
6.
本文开发了一种新型的方舱夹芯板用室温固化高强度环氧结构胶黏剂,验证了其物化特性、相关力学性能和环境适应性。结果表明此胶黏剂具有优良性能,可以满足方舱用大板胶黏剂的使用需求。  相似文献   
7.
Various products, including foods and pharmaceuticals, are sensitive to temperature fluctuations. Thus, temperature monitoring during production, transportation, and storage is critical. Facile indicators are required to monitor temperature conditions via color changes in real time. This study aimed to prepare and apply thiol-functionalized covalent organic frameworks (COFs) as a novel indicator for monitoring thermal history and temperature abuse. The COFs underwent obvious color changes from bright yellow to purple after exposure to different temperatures for varying durations. The reaction kinetics are analyzed under isothermal conditions, which reveal that the order of reaction rates is k−20°C < k4°C < k20°C < k35°C < k55°C. The activation energy (Ea) of the COFs is calculated using the Arrhenius equation as 50.71 kJ moL−1. The COFs are capable of sensitive color changes and offer a broad temperature tracking range, thereby demonstrating their application potential for the monitoring of temperature and time exposure history during production, transportation, and storage. This excellent performance thermal history indicator also shows promise for expanding the application field of COFs.  相似文献   
8.
9.
Gecko-inspired microfibrillar adhesives have achieved great progress in microstructure design and adhesion improvement over the past two decades. Space applications nowadays show great interest in this material for the characteristics of reversible adhesion and universal van der Waals interactions. However, the impact of harsh environment of space on the performance of microfibrillar adhesives, especially the extreme low temperature, is rarely addressed. Herein, microfibrillar adhesives fabricated by phenyl containing polydimethylsiloxane (p-PDMS) elastomers with superior low-temperature reversible adhesion is proposed. p-PDMS elastomers are synthesized through one-pot anionic ring-opening copolymerization, and the resulting elastomers become non-crystallizable with excellent low-temperature elasticity. Low-temperature adhesion tests demonstrate that the adhesion strength of microfibrillar adhesives fabricated by p-PDMS elastomers can be well maintained to as low as −120 °C. In contrast, the adhesion strength of pure PDMS microfibrillar adhesive reduces more than 50% below its crystallization temperature. The low-temperature cyclic adhesion tests further demonstrate that p-PDMS microfibrillar adhesives exhibit superior reversible adhesion compared to that of PDMS microfibrillar adhesives, owing to the sustainable conformal contact and even distribution of loads over repeated cycles. This study provides a new fabrication strategy for microfibrillar adhesives, and is beneficial for the practical application of microfibrillar adhesives.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号